

TECHNOLOGY ENGINEERING AND Remote Calibration / Health Check Pressure Transducer

Dynacs, Inc.

For

NASA Spaceport Engineering & Technology Directorate

Command & Control Branch
Transducers Development Laboratory

Richard Deyoe

Objectives

John F. Kennedy Space Center

- To provide a long term solution to determining the calibration of pressure transducers for gas applications
- To provide a method of isolating problems in remote measurements
- To reduce costs and resources by extending the length of time a calibration transducer may be left in a system without a repeat laboratory
- Develop An In-situ Pressure Transducer Calibration System For Extension Of Calibration Lifecycle And Transducer Health Determination

Design Requirements

John F. Kennedy Space Center

- Must be rugged enough to withstand launch and/or operation during planetary missions
- Must be designed to prevent system failure in the event of a calibration failure
- Must utilize available commodity and not waste any commodity during calibration/health check operations
- Must be capable of remote operation to efficiently determine system health and ensure measurement reliability
- For ground-based or space-based operation

Design Assumptions

John F. Kennedy Space Center

- I Only Three Items Will Change The Original Calibration:
- A change in the sensitivity of the transducer electronics associated with the measurement
- A mechanical change in the pressure diaphragm sensitivity
- A shift in the transducer "zero"
- If the sensitivities have not changed, the "zero" will remain within the manufacturers specification

Assumptions (continued)

John F. Kennedy Space Center

- Electronic Sensitivity is check by the "tried and true" method of shunting the bridge with a precision resistor
- During the calibration of the measurement, the value of this resistor and the offset are determined
- As long as the offset is the same, during this calibration operations electronic package has not changed (shunt resistor across one leg of the bridge), the sensitivity of the

Assumptions (continued)

John F. Kennedy Space Center

- Verification of the mechanical diaphragm element is the more difficult
- In order to verify the mechanical function of the pressure transducer, the diaphragm must be moved in a totally repeatable manner
- This is normally accomplished by applying a precise pressure to the input and reading the output
- Presently, generating an independent precision pressure in a remote location is a very expensive project and violates requirements
- Some portion of the system must be vented to expose the transducer to a precision source
- Expensive equipment must be utilized as a precision source

Design Approach

John F. Kennedy Space Center

TECHNOLOGY

- The design and method utilizes an entrapped volume and a precision deflect an exact amount each time the function is performed volume change to raise the pressure and cause the diaphragm to
- If the output of the transducer changes the same amount that it did has not changed. during the calibration, the mechanical sensitivity of the diaphragm
- If the electronic and mechanical sensitivities have not changed, the zero is within the manufacturers specifications

- Prototype design utilizes ¼ " stainless steel tubing.
- A valve is used for isolation and entrapment of a volume.
- A piston is utilized to displace a volume and provide a precision pressure change.
- The goal for the prototype size is an envelope of 1¼ X 1¼ X 3/₈ inches.

Process (+ Pressure)

John F. Kennedy Space Center

ENGINEERING AND SPACEPORT TECHNOLOGY

- To perform a calibration run using a Positive Pressure Change:
- The piston is drawn completely into the cylinder
- The valve is closed to isolate a volume
- The output of the pressure transducer is read (P_{initial})
- The piston is extended to change the volume & pressure The output of the pressure transducer is read ($\Delta\mathsf{P}_{\scriptscriptstyle{+}})$
- The piston is withdrawn into the cylinder
- The output of the pressure transducer is read (P_{final})
- Valve is opened

Process (+ Pressure)

John F. Kennedy Space Center

Process (- Pressure)

John F. Kennedy Space Center

SPACEPORT **ENGINEERING AND** TECHNOLOGY

- To perform a calibration run using a Negative Pressure Change:
- The piston is extended completely into the volume
- The valve is closed to isolate a volume
- The output of the pressure transducer is read (Pinitial)

The piston is withdrawn to change the volume & pressure

- The output of the pressure transducer is read ($\Delta P_{.}$)
- The piston is extended back into the volume
- The output of the pressure transducer is read (Pfinal)
- Valve is opened

Process (- Pressure)

John F. Kennedy Space Center
SPACEPORT

ENGINEERING AND TECHNOLOGY

